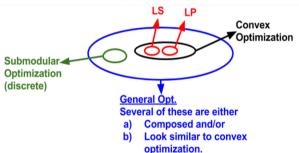
Lecture 1: Introduction to Convex Optimization CS709 Instructor: Prof. Ganesh Ramakrishnan

Introduction: Mathematical optimization

- Motivating Example
- Applications
- Convex optimization
- Least-squares(LS) and linear programming(LP) Very common place



- Course goals and topics
- Nonlinear optimization
- Brief history of convex optimization

Mathematical optimization

(Mathematical) Optimization problem:-

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i, i = 1, ..., m$.

 $x = (x_1,...,x_n)$: optimization variables

 $f_i: R^n \to R$, i = 1,...,m: constraint functions

optimal solution x^* has smallest value of f_0 among all vectors that satisfy the constraints

Almost Every Problem can be posed as an Optimization Problem

- Given a set $\mathcal{C} \subseteq \mathbb{R}^n$ find the ellipsoid $\mathcal{E} \subseteq \mathbb{R}^n$ that is of smallest volume such that $\mathcal{C} \subseteq \mathcal{E}$. Hint: First work out the problem in lower dimensions.
- Sphere $S_r \subseteq \Re^n$ centered at 0 is expressed as:

Almost Every Problem can be posed as an Optimization Problem

- Given a set $\mathcal{C} \subseteq \Re^n$ find the ellipsoid $\mathcal{E} \subseteq \Re^n$ that is of smallest volume such that $\mathcal{C} \subseteq \mathcal{E}$. Hint: First work out the problem in lower dimensions.
- Sphere $S_r \subseteq \Re^n$ centered at $\mathbf{0}$ is expressed as: $S = \{\mathbf{u} \in \Re^n | ||\mathbf{u}||_2 \le r\}$
- Ellipsoid $\mathcal{E} \subseteq \Re^n$ is expressed as:

Almost Every Problem can be posed as an Optimization Problem

- Given a set $C \subseteq \Re^n$ find the ellipsoid $E \subseteq \Re^n$ that is of smallest volume such that $C \subseteq E$. Hint: First work out the problem in lower dimensions.
- Sphere $S_r \subseteq \Re^n$ centered at $\mathbf{0}$ is expressed as: $S = \{\mathbf{u} \in \Re^n | \|\mathbf{u}\|_2 \le r\}$
- Ellipsoid $\mathcal{E} \subseteq \Re^n$ is expressed as: $\mathcal{E} = \{\mathbf{v} \in \Re^n | A\mathbf{v} + \mathbf{b} \in \mathcal{S}_1\} = \{\mathbf{v} \in \Re^n | A\mathbf{v} + \mathbf{b} \in \mathcal{S}_1\} = \{\mathbf{v} \in \Re^n | \|A\mathbf{v} + \mathbf{b}\|_2 \le 1\}$. Here, $A \in \mathcal{S}_{++}^n$, that is, A is an $n \times n$ (strictly) positive definite matrix.
- The optimization problem will be:

$$\label{eq:alpha} \begin{split} & \underset{[a_{11}, a_{12}, \dots, a_{nn}, b_1, \dots b_n]}{\text{minimize}} & & \textit{det}(A^{-1}) \\ & \text{subject to} & & \mathbf{v}^T A \mathbf{v} > 0, \ \forall \ \mathbf{v} \neq 0 \\ & & \|A \mathbf{v} + \mathbf{b}\|_2 \leq 1, \ \forall \mathbf{v} \in \mathcal{C} \end{split}$$

Every Problem can be posed as an Optimization Problem (contd.)

- Given a polygon \mathcal{P} find the ellipsoid \mathcal{E} that is of smallest volume such that $\mathcal{P}\subseteq\mathcal{E}$.
- Let $\mathbf{v}_1, \mathbf{v}_2, ... \mathbf{v}_p$ be the corners of the polygon \mathcal{P}
- The optimization problem will be:

$$\label{eq:animize} \begin{aligned} & \underset{[a_{11},a_{12},...,a_{nn},b_1,...b_n]}{\text{minimize}} & & \det(A^{-1}) \\ & \text{subject to} & & -\mathbf{v}^T A \mathbf{v} > 0, \ \forall \ \mathbf{v} \neq 0 \\ & & \|A \mathbf{v}_i + \mathbf{b}\|_2 \leq 1, \ i \in \{1..p\} \end{aligned}$$

5 / 23

Every Problem can be posed as an Optimization Problem (contd.)

- Given a polygon \mathcal{P} find the ellipsoid \mathcal{E} that is of smallest volume such that $\mathcal{P} \subseteq \mathcal{E}$.
- Let $\mathbf{v}_1, \mathbf{v}_2, ... \mathbf{v}_p$ be the corners of the polygon \mathcal{P}
- The optimization problem will be:

$$\label{eq:alpha} \begin{split} & \underset{[a_{11},a_{12},...,a_{nn},b_1,...b_n]}{\text{minimize}} & & \textit{det}(A^{-1}) \\ & \text{subject to} & & -\mathbf{v}^T A \mathbf{v} > 0, \ \forall \ \mathbf{v} \neq 0 \\ & & \|A \mathbf{v}_i + \mathbf{b}\|_2 \leq 1, \ i \in \{1..p\} \end{split}$$

• How would you pose an optimization problem to find the ellipsoid of largest volume that fits inside C?

So Again: Mathematical optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \leq b_i, i = 1, ..., m$.

 $x = (x_1,...,x_n)$: optimization variables

 $f_i: R^n \to R$, i = 1,...,m: constraint functions

 $\textbf{optimal solution}\ x^*$ has smallest value of f_0 among all vectors that satisfy the constraints

Examples

portfolio optimization

- variables: amounts invested in different assets
- constraints: budget, max./min. investment per asset, minimum return
- objective: overall risk or return variance

Examples

device sizing in electronic circuits

- variables: device widths and lengths
- constraints: manufacturing limits, timing requirements, maximum area
- objective: power consumption

Examples

data fitting - machine learning

- variables: model parameters
- constraints: prior information, parameter limits
- objective: measure of misfit or prediction error

More Generally..

- x represents some action such as
 - portfolio decisions to be made
 - resources to be allocated
 - schedule to be created
 - vehicle/airline deflections
- Constraints impose conditions on outcome based on
 - performance requirements
 - manufacturing process
- Objective $f_0(x)$ should be desirably small
 - total cost
 - risk
 - negative profit

Solving optimization problems

general optimization problems

- very difficult to solve
- methods involve some compromise, e.g., very long computation time, or not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

- least-squares problems
- linear programming problems
- convex optimization problems

Least-squares

$$\underset{x}{\mathsf{minimize}} \quad \|Ax - b\|_2^2$$

solving least-squares problems

- analytical solution: $x^* = (A^T A)^{-1} A^T b$
- reliable and efficient algorithms and software
- computation time proportional to n^2k (A $\in \mathbb{R}^{k \times n}$); less if structured
- a mature technology

using least-squares

- least-squares problems are easy to recognize
- a few standard techniques increase flexibility (e.g., including weights, adding regularization terms)

Linear programming

minimize
$$c^T x$$

subject to $a_i^T x \ge b_i, i = 1, ..., m$.

solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- ullet computation time proportional to n^2m if $m\geq n$; less with structure
- a mature technology

using linear programs

- not as easy to recognize as least-squares problems
- a few standard tricks used to convert problems into linear programs (e.g., problems involving I_1 or I_{∞} -norms, piecewise-linear functions)

Convex optimization problem

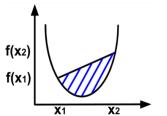
minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i, i = 1, ..., m$.

• objective and constraint functions are convex:

$$f_i(\alpha x_1 + \beta x_2) \le \alpha f_i(x_1) + \beta f_i(x_2)$$

if
$$\alpha + \beta = 1$$
, $\alpha \ge 0$, $\beta \ge 0$



• includes least-squares problems and linear programs as special cases

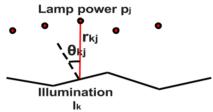
Convex optimization problem

solving convex optimization problems

- no analytical solution
- reliable and efficient algorithms
- computation time (roughly) proportional to $\{n^3, n^2m, F\}$, where F is cost of evaluating f_i 's and their first and second derivative
- almost a technology

using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization



intensity I_k at patch k depends linearly on lamp powers p_j :

$$I_{k} = \sum_{j=1}^{n} a_{kj} p_{j}, a_{kj} = r_{kj}^{-2} \max\{\cos\theta_{kj}, 0\}$$

problem: Provided the fixed locations(a_{kj} 's), achieve desired illumination I_{des} with bounded lamp powers

$$\label{eq:maxk} \begin{split} & \underset{p_j}{\text{minimize}} & & \max_{k=1,\dots,n} \mid \log(I_k) - \log(I_{des}) \mid \\ & \text{subject to} & & 0 \leq p_j \leq p_{max}, \; j=1,\dots,m. \end{split}$$

How to solve? Some approximate(suboptimal) 'solutions':-

- **1** use uniform power: $p_j = p$, vary p
- use least-squares:

$$\underset{p_j}{\mathsf{minimize}} \quad \sum_{k=1}^{n} \|I_k - I_{\mathsf{des}}\|_2^2$$

round p_j if $p_j > p_{max}$ or $p_j < 0$

use weighted least-squares:

minimize
$$\sum_{k=1}^{n} \|I_k - I_{des}\|_2^2 + \sum_{j=1}^{m} w_j \|p_j - p_{max}/2\|_2^2$$

iteratively adjust weights w_j until $0 \le p_j \le p_{max}$

use linear programming:

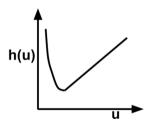
minimize
$$\max_{k=1,\dots,n} \mid I_k - I_{des} \mid$$

subject to $0 \le p_j \le p_{max}, \ j=1,\dots,m.$

• Use convex optimization: problem is equivalent to

$$\label{eq:f0} \begin{split} & \underset{p_j}{\text{minimize}} & & f_0(p) = \textit{max}_{k=1,..,n} \textit{h}(\textit{I}_k/\textit{I}_{\textit{des}}) \\ & \text{subject to} & & 0 \leq \textit{p}_j \leq \textit{p}_{\textit{max}}, \; j = 1,\ldots,m. \end{split}$$

with $h(u) = max\{u, 1/u\}$



- f₀ is convex because maximum of convex functions is convex
- exact solution obtained with effort \approx modest factor \times least-squares effort

Additional constraints does adding 1 or 2 below complicate the problem?

- o no more than half of total power is in any 10 lamps.
- ② no more than half of the lamps are on $(p_j > 0)$.

Additional constraints does adding 1 or 2 below complicate the problem?

- o no more than half of total power is in any 10 lamps.
- ② no more than half of the lamps are on $(p_j > 0)$.
- answer: with (1), still easy to solve; with (2), extremely difficult.

Additional constraints does adding 1 or 2 below complicate the problem?

- o no more than half of total power is in any 10 lamps.
- ② no more than half of the lamps are on $(p_i > 0)$.

- answer: with (1), still easy to solve; with (2), extremely difficult.
- moral: (untrained) intuition doesn't always work; without the proper background very easy problems can appear quite similar to very difficult problems.

Course goals and topics

Goals

- recognize/formulate problems (such as the illumination problem) as convex optimization problem
- develop code for problems of moderate size (1000 lamps, 5000 patches)
- characterize optimal solution (optimal power distribution), give limits of performance, etc

Topics

- Convex sets, (Univariate) Functions, Optimization problem
- Unconstrained Optimization: Analysis and Algorithms
- Constrained Optimization: Analysis and Algorithms
- Optimization Algorithms for Machine Learning
- Discrete Optimization and Convexity (Eg: Submodular Minimization)
- Other Examples and applications (MAP Inference on Graphical Models, Majorization-Minimization for Non-convex problems)

Grading and Audit

Grading

• Quizzes and Assignments: 15%

• Midsem: 25%

• Endsem: 45%

• Project: 15%

Audit requirement

Quizzes and Assignments and Project

Nonlinear optimization

traditional techniques for general nonconvex problems involve comprom **local optimization methods** (nonlinear programming)

- find a point that minimizes f₀ among feasible points near it
- fast, can handle large problems
- require initial guess
- provide no information about distance to (global) optimum

global optimization methods

- find the (global) solution
- worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems

Brief history of convex optimization

theory (convex analysis): ca1900–1970 algorithms

- 1947: simplex algorithm for linear programming (Dantzig)
- 1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . .)
- 1970s: ellipsoid method and other subgradient methods
- 1980s: polynomial-time interior-point methods for linear programming (Karmarkar 1984)
- late 1980s-now: polynomial-time interior-point methods for nonlinear convex optimization (Nesterov & Nemirovski 1994)

applications

- before 1990: mostly in operations research; few in engineering
- since 1990: many new applications in engineering (control, signal processing, communications, circuit design, . . .); new problem classes (semidefinite and second-order cone programming, robust optimization)